Mining and Evaluating
Verb tags and Other
Important POS tags
INnside Software
Documentation

William Sengstock (Team Leader), Kelly Jacobson, Zachary Witte,
Jacob Kinser, Samuel Moore, Dan Vasudevan, Austin Buller

Clients: Hiep Vo, Hung Phan

Advisor: Ali Jannesari

Project Vision

e Applying Part-Of-Speech (POS) tagging to Software Documentation
Research how to use NLP (Natural Language Processing) for software
documentation POS tagging

e Common uses of POS tagging

o Sentiment analysis - positive/negative reviews
o Filtering spam messages
o Language translation

Project Vision

e How is plaintext different from software documentation?
o Mixof plain English text and code chunks
o Code does not follow a grammatical pattern
o Syntaxis different - brackets instead of periods

e Why use POS tags on software documentation?

o Organization - group similar documents
o Search - find related documents
o ldentification - what type of document are you looking at

Project Requirements

e Functional
o Given software documentation, a model can be created and relationships
can be given to the data

e Non-Functional

O The final model will have an overall tag accuracy of 90% on software
documentation data
e Technical
o A new or modified tagging system will be used to handle the software
documentation

Plaintext vs Software Documentation

Plaintext

Software Documentation
CHAPTERI.

This - DET
Down - VERB This will be equal to will - VERB
Down the Rabbit- the - PART (mv_format==" be - VERB
Hole Rabbit - NOUN field")& & (
Alice was beginning NLP Process

equal - ADJ
Hole - NOUN picture_structure = NLP Process
to get very tired of +POS Alice - PROPN " Frame picture ") +POS

was - VERB i:0-MV Xand1-

sitting by her sister Tagging
on the bank, and of beginning - VERB MV_Y Value
having nothing to

= - equal
Tagging & -amp

i - raw_identifier
to - PART Returned : None

.- colon
get - VERB { 1 - numeric_constant

do: once or twice

Conceptual Design Diagram

Input: Data Pre-Processing:

Plaintext or Stop Word Removal,

Software Punctuation Cleanup,
Documentation Tokenization

Vectorization:
word2vec, TFIDF,
CBOW, Skip-Gram

Machine Learning Algorithms:
SpaCy, NLTK, StanfordNLP

Analysis

System Design - Preprocessing

e Tokenization

o Breaks sentences into words

o “Thisis tokenization” — [“This” “is”, “tokenization”]
e Stopwordremoval

o Ex.“the” “a” “an”
e Stemming

o Removes last few characters of a word

o Less accurate, and less costly

o [“changing”, “changed”, “change”] — [“chang”, “chang”, “chang”]
e Lemmatization

o Considers the context of the word

o More accurate, but more costly

» o« » o« » o«

o [“changing”, “changed”, “change”] — [“change”, “change”, “change”]

System Design - Punctuation

“A clyptocurrency, or crypto is a collection of binary data which is designed to work as a medium of
exchange wherein individual coin ownership records are stored in a ledger which is a computerized
database using strong cryptography to secure transaction records, to control the creation of additional
coins, and to verify the transfer of coin ownership."

https://en.wikipedia.org/wiki/Cryptocurrency

import nltk

sample_text = "A cryptocurrency, or crypto is a collection of binary data which is designed to [] work as a medium of exchang

»

punctuation = "!1()-[1{};:"\"\,<>./ 2
for item in sample_text:
if item in punctuation:
sample_text = sample_text.replace(item, "")

print(sample_text)

A cryptocurrency or crypto is a collection of binary data which is designed to work as a medium of exchange wherein individ
ual coin ownership records are stored in a ledger which is a computerized database using strong cryptography to secure trans
action records to control the creation of additional coins and to verify the transfer of coin ownership

https://en.wikipedia.org/wiki/Cryptocurrency

System Design - Tokenize

from nltk.tokenize import word_tokenize
tokenize = word_tokenize(sample_text)

print(tokenize)

'cryptocurrency’, ‘or', ‘crypto', 'is', 'a', 'collection’', ‘'of', 'binary’, 'data’', 'which’, 'is', ‘'designed’', 'to', 'w

‘as', 'a', 'medium’', 'of', 'exchange', ‘'wherein', 'individual', 'coin', ‘ownership’', ‘'records', ‘'are', 'stored', 'in’,

‘ledger’, 'which', 'is', 'a', 'computerized', 'database’', 'using', 'strong', 'cryptography', 'to’', 'secure’, 'transacti
on', 'records', 'to', 'control', 'the', ‘creation’, 'of', 'additional’, ‘coins', ‘'and', 'to’, 'verify', 'the', 'transfer’,
‘of", 'coin', ‘ownership']

System Design - Stopwords

In [28]: WM from nltk.corpus import stopwords
stopword = stopwords.words('english’)
print(stopword)

['i*, 'me’, 'my’, ‘'myself’', 'we', 'our’', ‘ours’, ‘ourselves', ‘'you', "you're", "you've", "you'll", "you'd"”, ‘your', 'yours',
'yourself', 'yourselves', 'he', 'him', 'his’', ‘'himself', 'she', "she's", 'her', 'hers', 'herself’, 'it', "it's", 'its’', 'its
elf', 'they', 'them', 'their', 'theirs', 'themselves', 'what’, ‘'which', 'who', ‘whom’', 'this', 'that’', "that'll", 'these’,
‘those’, 'am', 'is', ‘'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', ‘'having', 'do', 'does’, 'did’', 'doin
g', 'a', 'an', "the', 'and', 'but’, 'if’', 'or', 'because’, ‘'as’', 'until’', ‘while', 'of', ‘at’', 'by', 'for', 'with’', 'about’,
'against’', 'between’', 'into', ‘through', 'during’', 'before', 'after', 'above', 'below’', 'to’', 'from', 'up', ‘'down’', 'in’, ‘o
ut', 'on', 'off', 'over', ‘'under', 'again’', 'further', 'then’, ‘once', 'here’', 'there', 'when’', 'where', ‘'why', ‘how', 'al
1', 'any', 'both', ‘each’', 'few', 'more', 'most’, ‘other', ‘'some’', 'such’', 'no’', 'nor', 'not', ‘only', ‘own', 'same’, 'so’,
“than™, *too’,.vepy’, &%, *t%, %can®, “willl, just”, “don,. don’t™; “*should*, "should'vel; “now!, “d*, *11%, Iml, 07,
‘re', 've', 'y', 'ain', 'aren', "aren't", ‘'couldn', "couldn't", 'didn', "didn't", 'doesn', "doesn't", ‘hadn', "hadn't", 'has
"hasn't", 'haven', "haven't", 'isn', "isn't", 'ma', 'mightn’, "mightn't", 'mustn’, "mustn’'t"”, ‘'needn’', "needn't", 'sha
“"shan't", 'shouldn', "shouldn't", ‘'wasn’', "wasn't", 'weren', "weren't", ‘'won', "won't", ‘wouldn’, "wouldn't"]

remove_stopwords(tokenize):
sample_text = [word for word in tokenize if word not in stopword]
return sample_text

cleaned_data = remove_stopwords(tokenize)
print(cleaned_data)

['A", 'cryptocurrency', 'crypto', 'collection', 'binary', 'data’, 'designed', 'work', 'medium’, ‘'exchange', 'wherein’, 'indi
vidual', 'coin', ‘ownership', 'records', 'stored', 'ledger', 'computerized', 'database’, 'using', 'strong', 'cryptography’,
‘secure’, 'transaction', 'records’, ‘control’', ‘creation’, 'additional’, 'coins', ‘verify', ‘'transfer', 'coin’', 'ownership']

System Design - POS Tagging

M for i in cleaned_data:
wordsList = nltk.word_tokenize(i)

tagged_data = nltk.pos_tag(wordsList)
p t(tagged_data)

[¢'a*, 'o1")]
‘cryptocurrency’, 'NN')]
crypto’, 1
‘collection’, 'NN')]

‘designed’,
rk*, "NN')]

‘medium’, ¥

‘exchange’,

‘individual’,
‘coin’, 'NN')]
‘ownership’, '
‘records’, 'Ni
‘stored’, 'VBN')]
‘ledger', 'NN')]

' compute

database’, 'NN")]
‘using’, 'VBG')]
‘strong’, '33")
‘cryptography’, 'NN')]
‘secure’, .
‘transaction’, ‘NN')]
‘records’, 'NNS')]
‘control’, °NN')]
‘creation’, 'NN‘)]
‘additional’, '33")]
‘coins’, "NNS')]
‘verify', !
‘transfer’, \
‘coin’, 'NN")]
‘ownership', 'NN')]

"number”: [

{

"characters":

"Input”: ©.989533007144928

"return”: ©.988825798034668

"Output™: ©.987869918346405

"integer": ©.9870409965515137

"two": ©.9860666990280151

"array": 0.9859938621520996

0.9859803318977356

"Constraints”: ©.9854423999786377

"list": ©.9842109680175781

"given": ©.9838504195213318

Continuous Bag of Words (CBOW) model accuracy on software documentation
o CBOW model uses surrounding context to predict the meaning of words

System Design - spaCy

DR e b Bl Pl el
Input 80% 40% 40% 20% N/A
Example 50% 30% 40% 20% N/A
Output 60% A 40% 20% N/A
n 60% 0% 40% 20% 0%
Constraints 60% 10% 40% 20% N/A
Explanation 30% 0% 30% 0% N/A
return 70% 0% 30% 40% N/A
nums 60% 30% 20% 10% N/A
number 50% 10% 60% 30% N/A
Given 60% 30% 40% 30% N/A
Average 60% 24% 38% 21% 0%

System Design - spaCy

e Used KMeans clustering on software documentation

o Test: Will spaCy cluster words with similar POS tags in the same cluster?

o Results -
VERB 19.7%
NOUN 39.7%

OTHER 8.1%

NUM 7.1%

ADJ 7.2%

PROPN 17.0%

PROPN 16.1%

NOUN 41.2%

NOUN 41.2%

VERB 25.6%

OTHER 10.0%

AD) 5.7%

VERB 25.5%

OTHER 10.0%

ADJ 5.7%
PROPN 16.3%

PROPN 16.2%

NOUN 41.2% PROPN 16.2%

OTHER 10.1%

ADJ 5.7%

VERB 25.4%

NOUN 41.2%

VERB 25.3%

OTHER 10.1%

AD) 5.7%

System Design - NLTK

e POSIT Datavs NLTK POS tagging accuracy
o With Stop words removed

Adjective
Adverb

Verbs Cardinal Digit

Determiner

Parenthesis A . Adjectives

Period

Adverbs N - B Verbs

Design Complexity

e Analyzing POS tags for software documentation
o Sometimes tagged incorrectly
m (Ex.)“]"tagged as “="-> should be consistent
o How should software documentation be tagged
e Continuous testing needed to ensure results are valid
o POS tags are consistent with the tools used in order to determine

which is more accurate.

Project Plan

e Task Decomposition cont.

e Task Decomposition
P o Part 3: Model Testing &

o Part 1: Research .
NLP basics, pre-processing data SEWEe
. Syl Sl ’ m Comparison of different
vectorization strategies, word
clusterin NLP models.
i m Accuracy checks, analysis
m Learning how they operate. of POS tags on data
o Part 2: Model Building g. ’
manual review.

m Takingresearch and applying
them in real-time code.
m POStagging with different tools.
e NLTK, SpaCY.

e Risk & Mitigation Plan
o Ensure code operates correctly
o Apply same processing
techniques when comparing
models.

Alternative Approach

e Neural Networks
o Recurrent Neural Networks (RNN)
m Canbe easily trained on paired data (POS tag, word)

m Not many examples with software text
m Extremely large datasets
||

Very strong ability to detect unusual patterns

Conclusion

e Progress:

o Analysis of POS tagging toolkits for software documentation and now
have a great understanding of how accurate they are in regards to
software documentation

o Experimentation with techniques we think can greatly improve model
accuracy

e Nextsteps:
o Use our research and experimentation to develop/train an accurate POS
tagging system
o Constantly cross examine the difference in accuracy between current
POS tagging systems and our own

